Основные методы финансового прогнозирования

Точность прогнозов

Основными критериями при оценке эффективности модели, используемой в прогнозировании, служат точность прогноза и полнота представления будущего финансового состояния предприятия. С точки зрения полноты, безусловно, наилучшими являются методы, позволяющие построить прогнозные формы отчетности. В этом случае будущее состояние предприятия можно проанализировать не менее детально, чем его настоящее положение. Вопрос с точностью прогноза несколько более сложен и требует более пристального внимания. Точность или ошибка прогноза - это разница между прогнозным и фактическим значениями. В каждой конкретной модели эта величина зависит от ряда факторов.

Чрезвычайно важную роль играют исторические данные, используемые при выработке модели прогнозирования. В идеале желательно иметь большое количество данных за значительный период времени. Кроме того, используемые данные должны быть "типичными" с точки зрения ситуации. Стохастические методы прогнозирования, использующие аппарат математической статистики, предъявляют к историческим данным вполне конкретные требования, в случае невыполнения которых не может быть гарантирована точность прогнозирования. Данные должны быть достоверны, сопоставимы, достаточно представительны для проявления закономерности, однородны и устойчивы.

Точность прогноза однозначно зависит от правильности выбора метода прогнозирования в том или ином конкретном случае. Однако это не означает, что в каждом случае применима только какая-нибудь одна модель. Вполне возможно, что в ряде случаев несколько различных моделей выдадут относительно надежные оценки. Основным элементом в любой модели прогнозирования является тренд или линия основной тенденции изменения ряда. В большинстве моделей предполагается, что тренд является линейным, однако такое предположение не всегда закономерно и может отрицательно повлиять на точность прогноза. На точность прогноза также влияет используемый метод отделения от тренда сезонных колебаний - сложения или умножения. При использовании методов регрессии крайне важно правильно выделить причинно-следственные связи между различными факторами и заложить эти соотношения в модель [13, с 390].

Таким образом, точность прогноза финансовых коэффициентов в методах, основывающихся на построении прогнозной отчетности, всегда ниже точности, с которой определяются сами прогнозные значения строк отчетности. Поэтому, если аналитик, как это и должно быть, имеет определенные требования к точности определения финансовых коэффициентов, то должен быть выбран метод, обеспечивающий еще более высокую точность прогноза строк отчетности.

Прежде чем использовать модель для составления реальных прогнозов, ее необходимо проверить на объективность, с тем чтобы обеспечить точность прогнозов. Этого можно достичь двумя разными путями:

Результаты, полученные с помощью модели, сравниваются с фактическими значениями через какой-то промежуток времени, когда те появляются. Недостаток такого подхода состоит в том, что проверка "беспристрастности" модели может занять много времени, так как по-настоящему проверить модель можно только на продолжительном временном отрезке.

Модель строится исходя из усеченного набора имеющихся исторических данных. Оставшиеся данные можно использовать для сравнения с прогнозными показателями, полученными с помощью этой модели. Такого рода проверка более реалистична, так как она фактически моделирует прогнозную ситуацию. Недостаток этого метода состоит в том, что самые последние, а следовательно, и наиболее значимые показатели исключены из процесса формирования исходной модели.

Перейти на страницу: 1 2 3 4 5

Налоговая система и пути ее реформирования
Важнейшей составляющей бюджетно-финансовой системы любого государства являются налоги, под которыми понимается собирательное понятие, употребляемое для обозначения взимаемых государством платежей ...

Реинжиниринг и инновационные процессы
Сегодня достаточно посмотреть на любую компанию- от уличного ларька до транснационального гиганта типа Microsoft или Coca-Cola - и обнаружится, что деятельность компаний состоит из огромного колич ...